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Abstract. It is well-known that some of the classical location problems with polyhedral gauges
can be solved in polynomial time by finding a finite dominating set, i.e. a finite set of candidates
guaranteed to contain at least one optimal location.

In this paper it is first established that this result holds for a much larger class of problems than
currently considered in the literature. The model for which this result can be proven includes, for
instance, location problems with attraction and repulsion, and location-allocation problems.

Next, it is shown that the approximation of general gauges by polyhedral ones in the objective
function of our general model can be analyzed with regard to the subsequent error in the optimal
objective value. For the approximation problem two different approaches are described, the sandwich
procedure and the greedy algorithm. Both of these approaches lead - fok fixex polynomial
approximation algorithms with accuraeyfor solving the general model considered in this paper.

Key words: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sand-
wich Algorithm, Greedy Algorithm

1. Introduction

In recent years, research in location theory has been very active in models, which
can be solved using finite dominating sets (FDS), i.e. a set of finite cardinality
which contains an optimal location for the respective problem. If, in addition, the
cardinality of the FDS is polynomial in the input of the location problem the FDS
approach yields a polynomial solution algorithm, even in the worst case where an
extensive search for all candidates in the FDS is performed.

A predecessor of this idea is the median algorithm (see, for instance, [9, 24,
10]) for solving 1/P /e /11/ > _*, i.e. the problem of finding a best locatiann the
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* In this paper we use the 5-position classification scheme for location problems of [13] where
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plane such that the sum of the weighted rectilinear distances

N
F(x) =) axlx — als (1.1)
k=1
of x to the existing facilitiess, ... , ay € R? is minimized. The FDS consists of

the grid points given by the intersection of the rectilinear grid lines passing through
ay, ... ,dan.

A generalization of the previous problem is obtained if the rectilinear distance
llx — ax|l1 is replaced in (1) by a polyhedral gauge (see, e.g. [25, 29, 26])

v, (x) :=inf{x > 0: %x € By} (1.2)

whereB; is for eachk = 1, ..., N a convex polytope ifR? containing the origin

in its interior. An FDS for the resulting location problermiA/ e /y,,/ Y is given

by the grid points of the grid defined by the rays starting;itand passing through
each of the extreme points &,k = 1,..., N (see [8] and — in more general
form — Theorem 1). Obviously, this FDS is polynomial in the size of the problem,
if the input isN, the number of existing facilities, arid, the maximal number of
extreme points in any of the polytop&s.

Additional polynomial FDSs have been found for restricted problefis/R /

Ypoi/ Y_ Where a regiorR is excluded from siting new locations ([12, 26, 20, 14],
for barrier problems 1/P/8By,./ Y, where additionally trespassing is forbid-
den [11, 6, 22], and for ordered Weber problemi®1e /v,,/ ), 4 & class of
problems including — among others - sum and maximizing objectives [30, 31].

The common feature of the problems in which the FDS approach has been
applied successfully is the fact that distances are of the type (1.2), vithee
a polytope.

The goal of this paper is to show, that the FDS approach carries much further
than that. In Section 2, we introduce a very general location model which includes
problems with attraction and repulsion, location-allocation and gauges defined by
arbitrary compact, convex sets (i.e. non necessarily polytopes). Problems of this
type can so far only be tackled by standard methods of global optimization, which
do not use the specifics of the location background. In Section 3 we show, that
this problem class can be solved with any required accuracy by reducing it to a
problem solvable with an FDS approach. Sections 4 and 5 contain two proposals
how the general reduction idea can be specified using the sandwich approximation
technique of [3] and a greedy approach, respectively. The paper is concluded by a
summary of the results and a list of further research projects which are stimulated
by the ideas of this paper.

planar, network, discrete), specialties ( restrictions, barriers, constant weights, etc.), distance func-
tions, and type of objective function (sum, max, multi-objective, etc.), respectively. Here, bullets
indicate unspecified items.
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2. The location model — formulation and examples

In this paper, we consider a general planar location problem in wNigoints

ai, ... ,ay are given representing the geographic coordinates of demand points
or existing facilities. The distance between facilities is measured using N gauges
vy - - - » vBy defined by their respective unit balls, ... , By which are compact,
convex sets with the origin in their interior. Hence, the gauges are defined by

v (x) :=inf{x > 0: %x € B} (2.3)

Note that 1.2 is a special case of this definition in which the unit illare
convex polytopes forat = 1,... , N. (See e.qg. [25, 29] for further properties on
gauges.)

The problem addressed in this paper can be written as

rpeig F(x) := ®(x, yp,(x —a1), ¥g,(x —az), ..., vp,(x —ay)), (2.4)

whered : R? x RY — R satisfies
1. S is a bounded polygonal region R?.
2. For eachy € §, the function®(x, -) : Rﬁ —> R is componentwise non-
decreasing, i.e., if any := (u1,...,uyn),v := (v1,...,vy) are such that
u; <y foralli =1,...,N,then

D(x,u) < D(x,v)

3. For anyx € S, the function®(x, -) is Lipschitz-continuous with Lipschitz
constantL > O, i.e., forallx € Sand allu, v € Rﬁ,

|P(x, u) — P(x,v)| < Llju — v,

where|| - || denotes the Euclidean norm.
4. @ is quasiconcave, i.e., the séts, u) : ®(x,u) > «} are convex for all,
[1].

If we want to emphasize the dependence of the objective function on the chosen
unit balls we sometimes write the objective function/gs . z, or asFp.

The model under consideration is general enough to include as particular cases
many notoriously difficult planar single-facility location problems encountered in
the literature. Some examples are listed below.

The Weber problem with attraction and repulsi@an, for instance, be written
as

N
D(x,u) = — / yp(x — ) du(e) + ) oy,

k=1

wherewy, 1 < k < N are nonnegative weightg,is a measure in the plane apgl
is a gauge such that, for eaghyg(x — -) is integrable with respect to.



198 EMILIO CARRIZOSA ET AL.

Then, (2.4) becomes

N
Teigéwk)/& (x —ax) — f y(x — ) du(c). (2.5)
In casen has only mass on a finite set of points ... , ¢r, (2.5) has the more
familiar form
N T
rpeipzwkygk (x —ap) — Z n{eHysx — o), (2.6)
k=1 =1

addressed e.g. in [5, 7, 32, 35].

Another class of problems which is covered by our general approadicaten-
allocation Weber problems/ithin this category, we may consider single-facility
location problems in which the locational decision yields also allocation of de-
mand, see [29]. A relevant instance is the so-cafeafit-maximizing Weber prob-
lem [17, 27]: Set

N
®(x,u) = min (Zm(gk(uk)—Dk(nk))),
k=1

(m1,... .)€l

whereIl is a compact subset &%, ¢1,...,gy : Ry — R are concave non-
decreasing functions with directional derivative bounded, &id... , Dy are
arbitrary functions. Then, Problem (2.4) can be written as

N
min_ > m (g (v (x — @) — Dr(mp)) ,

xeS,re

or equivalently as

N
max Y m (Di(m) — gi(va, (x — @), (2.7)

xeS,mell 1
which has the following interpretation: together with the locational decision, we
can chose the pricesry, ... ,my) € I1 charged per unit of product delivered to
the demand points (marketsy, ... , ay. The demand of market, if price n; is
charged isD, (7ry), and the transportation cost per unit of product are given by a
function g, of the distancey, (x — a;) separating the facility and,. Hence, the
total profit, to be maximized, is given by the objective function of (2.7).

An important particular case (although the allocation part disappears), is given
by the choicell = {7}, i.e., the price is not any more a decision variable. Then,
up to irrelevant additive constant®, has the formd_y_, 72g (u), thus Problem
(2.4) becomes the Weber problem in which costs are assumed to be non-decreasing
concave (not necessarily affine) functions of distances, [19, 34].
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Other single-facility location-allocation easily accommodated within our frame-
work are Weber problem with supply surplustroduced in [21] or the Weber
problem with alternative transportation systems, addressed in [4].

Obviously, the objective functiof of Problem (2.4) is not differentiable. More-
over, F is a composition of a nondecreasing quasiconcave and convex functions
(vs, (- — ax)), in general neither (piecewise) convex nor concave, such that sev-
eral local optimal solutions may exist which are not globally optimal. Hence, if
global optimal solutions are sought, one is obliged to use Global-Optimization
procedures, from the simplest grid-search to more sophisticated techniques, such
as polyhedral annexation, outer approximation or branch and bound schemes ([15,
18)).

These methods may be successfully applied if the feasible refjisra rect-
angle or a convex polygon, but § does not have a nice shape, these general-
purpose techniques may be hard to implement (think, for instance, of the construc-
tion of a regular covering grid over a nonconvex polygon) or may not work at all
(e.g. the polyhedral-annexation procedure described in [34]). Only (variants of)
the branch-and-bound method introduced in [16] seem to be of use for these cases,
see [15, 28]. Even if in some cases the latter methods may work well in practice,
it is only known that, for any accuraay > 0, they stop after a finite number of
iterations yielding are-optimal solution, [28]. However, no worst-case analysis,
providing the order of magnitude of such finite hnumber of iterations to obtain an
g-optimal solution seems to have been described so far.

In the following section we will therefore introduce an approach which —under
the rather weak assumptions of our model — results in algorithms with a priori
known complexity bounds.

3. Approximation results

We first analyze Problem 2.4 in the case of polyhedral gauges.

If the unit ballsB, are polytopes, we consider for eack= 1, ... , N the cones
defined by the rays starting from in the direction of the corner points &. It is
well-known (see [8, 25, 29]) thatz, defined by (2.3) is a linear function in each of
these cones. Hence, their intersection ovekall 1, ... , N defines a tessellation
of the plane into polyhedra such that within these polyhedra each of the functions
v, (x — ai) is affinely linear inx.

For an arbitrary seX we denote by exX) the set of all extreme points of the
convex hull conyX) of X. Since a concave function attains its minimum at extreme
points of the feasible region, the discussion above implies the following result.

THEOREM 1. SupposeB, ... , By are polytopes. LetP;, i € I} be afinite set of
polyhedra coverindR? such that eacly, (x —a;) is affinely linear inx within each
P;. Then, the sefext(S N P;), i € I} is an FDS for problem (2.4) (see Figure 1).

Proof. Since{P;, i € I} covers the plane, for any € S there exists* € I
such thatr belongs to the polygo®;- N S.
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Figure 1. lllustration for Theorem 1.

Since eaclyg, (x —ay) is affinely linear withinP;«, it follows that, within P;+, F
is the composition of the quasiconcave functibmvith the affinely linear function
mappingy € P to (y, yp,(y —a1), ..., vey(y —an)). ThusF is quasiconcave
on conV P~ N S), and, therefore, attains its minimum on coARv N S) in some
element of extP; N §).

Hence, any feasible is dominated by some* e | J,, ext(P;- N S), as asser-
ted. 0

As a consequence of Theorem 1, Problem (2.4) can — for polyhedral gauges —
be reduced to inspecting the finite list of points in the(set, ext(P; N S). If each
By hasv(By) extreme pointsy := ma>§’=1 v(By) and S hasv(S) extreme points,
thenl ., ext(P; N S) will have cardinality

O(N2VZ2 4+ NVu(S)), (3.8)

and can be constructed by well-known computational geometry techniques [2, 23].
In the case of gauges defined by arbitrary compact, convex unitdalls., By,
Theorem 1 obviously does not hold. The best we can hope for in this general
situation is an FDS result for an approximate solution of Problem (2.4).
The following, straightforward property will be of use to achieve this goal.

THEOREM 2. Given two compact convex seg, B, with the origin in the re-
spective interior, the following property holds.
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1. If B1 C B> thenyBl > VB,
2. ForanyA > 0O, yap) = %VB

Next, we will use the Lipschitz property of the functidin to see the impact
for Problem (2.4) of replacing unit balls in the definition of gauges by other unit
balls and prove the following approximation result. (Recall, thafx) stands for
the objective functiorF (x) in Problem (2.4) in which the gauges are defined with

respect to the se@ = {Q1, ..., Oy} of unit balls.)
THEOREM 3. LetCy, E;, D; be compact, convex sets witke int(Cy) and
Cy C Ex € Dy C AGy, k=1,...,N, (3.9)

for someA > 1. Moreover, letL > 0 be the given Lipschitz constant fdr(x, -),
and letM satisfy

M > max —ay),..., — 3.10
yeexts) lye,(y —au) Yoy (v —an)l| ( )

Then we get for any, Q € {C, D, E} ande = L(1— )M
1.

0< |Fp(x) — Fo(x)| <& (3.11)

2. Any optimal solutionp for min,cs Fp(x) is ane-optimal solution formin, g
Fo(x)
Proof. By Theorem 2,

1
ve,(x) = ye, (x) =2 yp,(x) = Zyck(x) VxeS, k=1,2,... ,N

Since, by assumptior® (x, -) is componentwise nondecreasing,
Fc(x) = @(x, yc,(x —a1), ..., Ycy(x —an))

2 CD()C, )/E]_(-x - al)v cee VEN(-x _aN))
= O(x,yp,(x —ai), ..., ypy(x —an))
1 1
2 CD()C, _)/C]_(-x _al)’ e _VCN(-X - aN))

A A
Hence for allP, Q € {C, D, E}

0 < |Fp(x) — Fo(x)|

1 1
< Fe(x) — D(x, Xycl(x —ai)..., XJ/CN(X —ay)),

1
g L”()/Cl(x _al)a LRI} VCN(-X - aN)) - X(Vcl(x - al)a D)
Yoy (x —an)l
1
= L(1- X)Il(m(x —a1), ..., Yey(x —an))ll
1
< L= maxli(ve, (v = ap). .. . ve, (0 = ay)l
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Since the function mapping € Rﬁ to |lu|| is convex and componentwise
increasing, and the function assigning to each R? the value(yc, (x — ay), . . . ,
vey (X — ay)) is convex, it follows that the functiow e R? +— l(ye,(x —
ai), ..., Yey(x —ay))l is also convex, thus attaining its maximum ®mt some
point in ex(S). In other words,

maX||(yc,(y —au), ..., veyy —an)ll = max_|[(ye,(y —az), ...,
yes yeext(s)
Yoy (v —an))ll
< M,
such that

1
|Fp(x) — Fo(x)| < L(1— X)M’

as claimed in (3.11).
If xp andxy denote optimal solutions for mips Fp(x) and mines Fo(x),
respectively, then we get

|Fp(xp) — Fo(xg)| = Fp(xp) — Fo(xp)(if not, interchange P and Q)
< Fp(xg) — Fo(xp)

1
L1—- )M,
Q-2

IA

showing thes = L(1 — £) M- optimality. O

Theorem 3 enables us to solve Problem 2.4 with any required acceragy
choosingP = B = {By,..., By} as the originally given unit balls B of Prob-
lem 2.4 andQ = B = {B, ..., By} as a set of polyhedral balls satisfying (3.9)
according to the following algorithm.

ALGORITHM 1. (Input: ¢ > 0O; Output: x, e-optimal for Problem (2.4)).

Step 0: Set
&
M = max{—, max —dai), ..., —a
><{L oax Vs, (y — a1) Yey (Y —an)|l}
A=14—"t

LM —¢
Step 1: Find a seB of polytopesB;, ... , By such thatP = B andQ = B satisfy
the conditions of Theorem 3.
Step 2: Use Theorem (1) to find an optimal solutioof

rpeigjﬁ(x) = ®(x, yp,(x —a1), yp,(x —az), ..., vz, (x —an)).
(3.12)
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STOP x satisfies

|Fz(X) — migF(x)l <e
xXe

As we have seen in the beginning of this section, Step 2 can be done fot fixed
in polynomial time, where the complexity of this step is depending on the maximal
numberV of extreme points in any of the polytopé. It is therefore crucial to
choose the polytopes in such a way that V is as small as possible. In the subsequent
section, we will present two approaches dealing with this problem. In the first
approach based on the sandwich algorithm of [3, 33] we choose in Theorem 3
Er = B, andC; and D, as inner and outer approximation 8f, respectively.
The resulting algorithm will produce an a priori bound on the cardinality of a FDS
to solve Problem 2.4 with required accuracyin the second approach, a Greedy
procedure is applied to find a so-called polyhedral, convex sepaiateparating
Ci = Brand Dy = ABy = (1 + 57—) B It will be shown that the number of
extreme points produced with this procedure is at most by 1 larger than the smallest
possible one.

4. Finding approximating polytopes by the sandwich procedure

We use the sandwich algorithm proposed by [3] for univariate convex functions and
applied by [33] for approximation of convex bodies. The idea of the sandwich ap-
proach is to iteratively approximate a given convex body B with the goal of getting
at the end of the iterations a required accur&cy O by an interior polyhedro®’
and an outer polyhedroB?, respectively, i.eB' € B € B° C (1+ §)B. In each
iteration of the algorithm we check whether the Hausdorff distance (with respect
to Euclidean distanck)
Hy,(B', B°) = maxminly(x, y) > 6.
xeB° yeB!

If this is not the caseH,,(B’, B°) < § as required. Otherwise, a paire B°,
y € B with [>(x, y) > & is chosen and the pointe [x, y]Nbd(B) is identified.B’
and B are updated by choosingn the inner polyhedron Bas additional extreme
point and in the outer polyhedrorf Bs supporting point (see Figure 2).

If R is the circumference of B, it can be shown (see [3, 33]) that no more than

/8R
max[4, 5 + 2}
many iterations are needed before the procedure stopsBAith B € B° such
that H,(B', B°) < 6.

Since B is sandwiched by3’ and B° we obtain the same bound for the Haus-
dorff distances betweeB andB’, andB andB?, i.e.

H,(B,B%) <§ and  H,(B, B') <.
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Figure 2. One iteration of the sandwich algorithm. The distahge, y) > § such that; is
included as additional point in both approximating polyhedra.

Consequently, bothB’ and B?, can be used as&-approximation ofB. We can
therefore define in Theorem @, = B, E;, = B, and D, = B for all k =
1,...,n,andA = §+ 1. If R, is the circumference aB;, k=1,...,Nand

Vi an integer such that, > max{4, % + 2}, then B! and BY are polyhedra

with O (V) many extreme points. Using := max, V;, the complexity result for
solving location Problem (2.4) with respect to polynomial gauges, (see Theorem 1
and the subsequent analysis) and the interreladtienA — 1 = =, Theorem 3
yields the following result.

THEOREM 4. An g-optimal solution of Problem 2.4 can be obtained by consid-
ering an FDS of cardinalityO (N?V? + Nv(S)V) wherev(S) is the number of
extreme points of the feasible regiSn

5. Finding approximating polytopes by the Greedy algorithm

In this section we will separate the closed convex égts= B, andD, = AB; =
(1 + 157=) B« by a polytopeE; in the sense of Theorem 3. A polytogg with
the required propert¢;, € E; € D is called a convex separator with respect to
Cr and Dy, denotedes(Dy \ Cy). In order to simplify the denotation we will in
the following delete the indek and investigate the problem of finding for given
closed, convex set€ and D with C € D a convex separatars(D \ C), i.e.
CCes(D\NC)C D

The boundanbd(cs(D \ C)) of cs(D \ C) is a closed polygonal curve. If the
context is clear we often call the boundary itself a convex separator. Our goal is
to find convex separators with the smallest possible number of extreme points, a
minimum convex separator

For this purpose we define for any poitite bd(D) the procedurelangent
(d, C) as the process of identifying

e the clockwise tangent with respect@passing throughl
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d

Figure 3. Example for Tangentd, C).

e the pointc € C where the tangent touchés
e the second poind’ € bd(D) contained in the tangent.

Output of Tangentd, C) is the line segmerjtl, d’] and the touching point(see
Figure 3). The following algorithm will iteratively apply the procedure Tangent
(d, C) until a convex separator is found.

Greedy Algorithm for finding c¢s(D \ C) (see Figure 4)

1. Choosel; € D and apply Tangenid,, C) to obtain[d,, d>] andc,, seti = 2.

2. Apply Tangentd;, C) to obtain[d;, d; ;1] andc;.

3. If dy is visible fromd; 4 choose ind;, d; 1] the pointd closest tad; which is
visible fromd; setd; .1 = d and outpubd(cs(C\D)) = (d1, c1,d>, ... , d;, ¢;,
diy1, Ciy1,d1)

Else:i :=i + 1 and Goto 2

Figure 4. Example for the Greedy Algorithm.
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By definition, the Greedy algorithm produces a convex separator with respect
to C andD. The next theorem shows, that it is, for the purpose of applying it to the
location problem 2.4, particularly well suited.

THEOREM 5. The Greedy algorithm outputs a minimum convex separator with
respect taC and D or contains one more vertex than a minimum convex separator.

Proof.Letcs(D \ C, d1) be the convex separator defined by the Greedy proced-
ure obtained from starting poiat. Obviously the following property holds:

If dy is moved clockwise alongd (D) thency, ¢z, ... ,ciy1 @andda, ... ,di11
will also move clockwise along and D, respectively.

We now show that/; can be chosen in such way that (D \ C, d;) is even a
minimum convex separator.

For this purpose let the close polyg®rbe any minimal convex separator. Wlog
we assume that every edge Bfis tangent taD. (If this is not the case, move a
non-tangent edge inwards along its adjacent edges until it becomes tangent (see
Figure 5). This process does not increase the number of verticRg dtvo cases
may exist.

Figure 5. Moving an edge inwards.

Case 1.P contains exactly one or no vertex in ibt. ThenP = c¢s(D \ C, dy),
whered; is the vertex ofP clockwise next to the vertex in ir@ (if such a
vertex exists) or any vertex @, respectively.

Case 2. IfP contains at least two vertices in ifi. Let v be one of them with
adjacent edges and f in clockwise order, and let be the other end vertex
of f. If we move along the extension efto bd(D) and maintain the tangent
property of f, vertexu moves clockwise alongd(C). (see Figure 6)
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Figure 6. Moving v to the boundary.

According to the observation at the beginning of the proof all subsequent ver-
tices of P will move clockwise alongd (D) until the first node inD is reached. A
new vertex in int(D) is generated resulting in a new convex separ&avith the
same number of vertices, but containing one more of theiw@®) than before.

By iteratively applying this procedure the assumption of Case 1 finally holds
such thats (D \ C, d;) is, indeed, a minimal convex separator.

Now let P(D \ C,dy) and P(C \ D, b) be an arbitrary and minimal convex
separator, respectively, both delivered by the Greedy procedure.

If the two vertices of P(D \ C, b) N bd(D) next tod, - sayb andb’ - are
directly connected by an edge &f(D \ C, b) (see Figure 7), then draw both
tangents with respect t6 passing throughD and intersectingP (D \ C, b) atw
andv, respectively. Move along the tangent away from until it reachesd(C)
thus rotating the following edges as discussed before. This operation gives us the
polygonal curveP (D \ C, ¢1) which — by construction — is a convex separator
and has a number of vertices at most one larger than the number of vertices of the
minimum convex separatd® (C \ D, b).

Note thatP (D\C, d;) is even a minimum convex separatodiif= b ord, = b'.

If b andb’ are connected by two edges®{D \ C, b) the same procedure leads
againtoP = (D \ C,dy) with |[V(P(D \ C,dy))| = |V(P(D\ C,b))| + 1 (see
Figure 8)

In the case, where the seisandC are unit balls of the Euclidean metric, the
choice of the starting point is because of the symmetry ahd D irrelevant. The
proof of the preceding theorem thus implies that the following result holds.

COROLLARY 6. If D = {x € R?: ||x|| < 1} is thel,-unit ball andC = A - D
for A > 1, then anyP(C \ D, c;) produced by the Greedy procedure is optimal.

Notice that in the case of Corollary 6, the location problem with polyhedral
gauges may be further simplified. If the optimal numbersf extreme points in
the convex separator is known from the application of the Greedy algorithm, the
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P(D\Cd,)

Figure 8. b andb’ are not directly connected by an edge.

Greedy convex separators may be replaced by redl#giones. Consequently, the
usually irregular tessellation of the plane (see Figure 1) is replaced by a regular
one which opens up new possibilities to improve the average running time of the
algorithm.

6. Conclusion and future research topics

In this paper we have developed a polynomial approximation scheme for a very
general class of location problems. The characteristic of the solution approach is
the reduction of the original problem to problems in which the distance between
new and existing facilities is measured by a polyhedral gauge. This modified prob-
lem can be solved by identifying a finite dominating set (FDS) of a size which is —
for fixed accuracy: — polynomial in the input of the problem.
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We have presented two alternative approaches to find a suitable transformation
to a polyhedral gauge problem, one based on the sandwich approach, the other on
a Greedy procedure.

The algorithms presented in this paper are for some of the specific choices of
feasible sets and function® the only known approaches to solve these problems
in a systematic way and with apriori knowledge of the accuracy obtained after a
given number of elementary operations. Besides the fact, that this allows the treat-
ment of problems which so far could not be dealt with, it will also be investigated in
the future, how the approach compares with alternatives in cases, where algorithms
which have worked in the past satisfactorily are already available.

A first example will be problems with Euclidean distances. Here, the approxim-
ation uses polyhedral gauges with unit balls having the smallest number of extreme
points. Since the unit balls can be chosen as regdlgiones the search in the
resulting regular grid can be streamlined. It remains to be seen, whether the res-
ulting algorithm will be competitive with current approaches to Euclidean location
problems with non-convex objectives.
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