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Abstract. It is well-known that some of the classical location problems with polyhedral gauges
can be solved in polynomial time by finding a finite dominating set, i.e. a finite set of candidates
guaranteed to contain at least one optimal location.

In this paper it is first established that this result holds for a much larger class of problems than
currently considered in the literature. The model for which this result can be proven includes, for
instance, location problems with attraction and repulsion, and location-allocation problems.

Next, it is shown that the approximation of general gauges by polyhedral ones in the objective
function of our general model can be analyzed with regard to the subsequent error in the optimal
objective value. For the approximation problem two different approaches are described, the sandwich
procedure and the greedy algorithm. Both of these approaches lead - for fixedε - to polynomial
approximation algorithms with accuracyε for solving the general model considered in this paper.

Key words: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sand-
wich Algorithm, Greedy Algorithm

1. Introduction

In recent years, research in location theory has been very active in models, which
can be solved using finite dominating sets (FDS), i.e. a set of finite cardinality
which contains an optimal location for the respective problem. If, in addition, the
cardinality of the FDS is polynomial in the input of the location problem the FDS
approach yields a polynomial solution algorithm, even in the worst case where an
extensive search for all candidates in the FDS is performed.

A predecessor of this idea is the median algorithm (see, for instance, [9, 24,
10]) for solving 1/P/• / l1/∑?, i.e. the problem of finding a best locationx in the
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? In this paper we use the 5-position classification scheme for location problems of [13] where

Positions 1 through 5 characterize number and type of the new facility(ies), the environment (e.g.,
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plane such that the sum of the weighted rectilinear distances

F(x) :=
N∑
k=1

ωk‖x − ak‖1 (1.1)

of x to the existing facilitiesa1, . . . , aN ∈ R2 is minimized. The FDS consists of
the grid points given by the intersection of the rectilinear grid lines passing through
a1, . . . , aN .

A generalization of the previous problem is obtained if the rectilinear distance
‖x − ak‖1 is replaced in (1) by a polyhedral gauge (see, e.g. [25, 29, 26])

γBk(x) := inf{λ > 0 : 1

λ
x ∈ Bk} (1.2)

whereBk is for eachk = 1, . . . , N a convex polytope inR2 containing the origin
in its interior. An FDS for the resulting location problem 1/P/ • /γpol/∑ is given
by the grid points of the grid defined by the rays starting inak and passing through
each of the extreme points ofBk, k = 1, . . . , N (see [8] and – in more general
form – Theorem 1). Obviously, this FDS is polynomial in the size of the problem,
if the input isN , the number of existing facilities, andV , the maximal number of
extreme points in any of the polytopesBk.

Additional polynomial FDSs have been found for restricted problems 1/P/R/
γpol/

∑
where a regionR is excluded from siting new locations ([12, 26, 20, 14],

for barrier problems 1/P/B/γpol/
∑

, where additionally trespassing is forbid-
den [11, 6, 22], and for ordered Weber problems 1/P/ • /γpol/∑ord, a class of
problems including – among others - sum and maximizing objectives [30, 31].

The common feature of the problems in which the FDS approach has been
applied successfully is the fact that distances are of the type (1.2), whereBk is
a polytope.

The goal of this paper is to show, that the FDS approach carries much further
than that. In Section 2, we introduce a very general location model which includes
problems with attraction and repulsion, location-allocation and gauges defined by
arbitrary compact, convex sets (i.e. non necessarily polytopes). Problems of this
type can so far only be tackled by standard methods of global optimization, which
do not use the specifics of the location background. In Section 3 we show, that
this problem class can be solved with any required accuracy by reducing it to a
problem solvable with an FDS approach. Sections 4 and 5 contain two proposals
how the general reduction idea can be specified using the sandwich approximation
technique of [3] and a greedy approach, respectively. The paper is concluded by a
summary of the results and a list of further research projects which are stimulated
by the ideas of this paper.

planar, network, discrete), specialties ( restrictions, barriers, constant weights, etc.), distance func-
tions, and type of objective function (sum, max, multi-objective, etc.), respectively. Here, bullets
indicate unspecified items.



SOLVING NONCONVEX PLANAR LOCATION PROBLEMS 197

2. The location model – formulation and examples

In this paper, we consider a general planar location problem in whichN points
a1, . . . , aN are given representing the geographic coordinates of demand points
or existing facilities. The distance between facilities is measured using N gauges
γB1, . . . , γBN defined by their respective unit ballsB1, . . . , BN which are compact,
convex sets with the origin in their interior. Hence, the gauges are defined by

γBk(x) := inf{λ > 0 : 1

λ
x ∈ Bk} (2.3)

Note that 1.2 is a special case of this definition in which the unit ballsBk are
convex polytopes for allk = 1, . . . , N . (See e.g. [25, 29] for further properties on
gauges.)

The problem addressed in this paper can be written as

min
x∈S

F (x) := 8(x, γB1(x − a1), γB2(x − a2), . . . , γBN (x − aN)), (2.4)

where8 : R2× RN+ −→ R satisfies
1. S is a bounded polygonal region inR2.
2. For eachx ∈ S, the function8(x, ·) : RN+ −→ R is componentwise non-

decreasing, i.e., if anyu := (u1, . . . , uN), v := (v1, . . . , vN) are such that
ui 6 vi for all i = 1, . . . , N , then

8(x, u) 6 8(x, v)

3. For anyx ∈ S, the function8(x, ·) is Lipschitz-continuous with Lipschitz
constantL > 0, i.e., for allx ∈ S and allu, v ∈ RN+ ,

|8(x, u) −8(x, v)| 6 L‖u− v‖,
where‖ · ‖ denotes the Euclidean norm.

4. 8 is quasiconcave, i.e., the sets{(x, u) : 8(x, u) > α} are convex for allα,
[1].

If we want to emphasize the dependence of the objective function on the chosen
unit balls we sometimes write the objective function asFB1,... ,BN or asFB .

The model under consideration is general enough to include as particular cases
many notoriously difficult planar single-facility location problems encountered in
the literature. Some examples are listed below.

TheWeber problem with attraction and repulsioncan, for instance, be written
as

8(x, u) = −
∫
γB(x − c)dµ(c)+

N∑
k=1

ωkuk,

whereωk, 16 k 6 N are nonnegative weights,µ is a measure in the plane andγB
is a gauge such that, for eachx, γB(x − ·) is integrable with respect toµ.
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Then, (2.4) becomes

min
x∈S

N∑
k=1

ωkγBk(x − ak)−
∫
γB(x − c)dµ(c). (2.5)

In caseµ has only mass on a finite set of pointsc1, . . . , cT , (2.5) has the more
familiar form

min
x∈S

N∑
k=1

ωkγBk(x − ak)−
T∑
t=1

µ({ct})γB(x − c), (2.6)

addressed e.g. in [5, 7, 32, 35].
Another class of problems which is covered by our general approach arelocation-

allocation Weber problems. Within this category, we may consider single-facility
location problems in which the locational decision yields also allocation of de-
mand, see [29]. A relevant instance is the so-calledProfit-maximizing Weber prob-
lem, [17, 27]: Set

8(x, u) = min
(π1,... ,πN )∈5

(
N∑
k=1

πk (gk(uk)−Dk(πk))

)
,

where5 is a compact subset ofRN+ , g1, . . . , gN : R+ −→ R are concave non-
decreasing functions with directional derivative bounded, andD1, . . . ,DN are
arbitrary functions. Then, Problem (2.4) can be written as

min
x∈S,π∈5

N∑
k=1

πk
(
gk(γBk(x − ak))−Dk(πk)

)
,

or equivalently as

max
x∈S,π∈5

N∑
k=1

πk
(
Dk(πk)− gk(γBk(x − ak))

)
, (2.7)

which has the following interpretation: together with the locational decision, we
can chose the prices(π1, . . . , πN) ∈ 5 charged per unit of product delivered to
the demand points (markets)a1, . . . , aN . The demand of marketak if price πk is
charged isDk(πk), and the transportation cost per unit of product are given by a
function gk of the distanceγBk(x − ak) separating the facility andak. Hence, the
total profit, to be maximized, is given by the objective function of (2.7).

An important particular case (although the allocation part disappears), is given
by the choice5 = {π0}, i.e., the price is not any more a decision variable. Then,
up to irrelevant additive constants,8 has the form

∑N
k=1π

0
k gk(uk), thus Problem

(2.4) becomes the Weber problem in which costs are assumed to be non-decreasing
concave (not necessarily affine) functions of distances, [19, 34].
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Other single-facility location-allocation easily accommodated within our frame-
work are Weber problem with supply surplusintroduced in [21] or the Weber
problem with alternative transportation systems, addressed in [4].

Obviously, the objective functionF of Problem (2.4) is not differentiable. More-
over,F is a composition of a nondecreasing quasiconcave and convex functions
(γBk(· − ak)), in general neither (piecewise) convex nor concave, such that sev-
eral local optimal solutions may exist which are not globally optimal. Hence, if
global optimal solutions are sought, one is obliged to use Global-Optimization
procedures, from the simplest grid-search to more sophisticated techniques, such
as polyhedral annexation, outer approximation or branch and bound schemes ([15,
18]).

These methods may be successfully applied if the feasible regionS is a rect-
angle or a convex polygon, but ifS does not have a nice shape, these general-
purpose techniques may be hard to implement (think, for instance, of the construc-
tion of a regular covering grid over a nonconvex polygon) or may not work at all
(e.g. the polyhedral-annexation procedure described in [34]). Only (variants of)
the branch-and-bound method introduced in [16] seem to be of use for these cases,
see [15, 28]. Even if in some cases the latter methods may work well in practice,
it is only known that, for any accuracyε > 0, they stop after a finite number of
iterations yielding anε-optimal solution, [28]. However, no worst-case analysis,
providing the order of magnitude of such finite number of iterations to obtain an
ε-optimal solution seems to have been described so far.

In the following section we will therefore introduce an approach which – under
the rather weak assumptions of our model – results in algorithms with a priori
known complexity bounds.

3. Approximation results

We first analyze Problem 2.4 in the case of polyhedral gauges.
If the unit ballsBk are polytopes, we consider for eachk = 1, . . . , N the cones

defined by the rays starting fromak in the direction of the corner points ofBk. It is
well-known (see [8, 25, 29]) thatγBk defined by (2.3) is a linear function in each of
these cones. Hence, their intersection over allk = 1, . . . , N defines a tessellation
of the plane into polyhedra such that within these polyhedra each of the functions
γBk(x − ak) is affinely linear inx.

For an arbitrary setX we denote by ext(X) the set of all extreme points of the
convex hull conv(X) ofX. Since a concave function attains its minimum at extreme
points of the feasible region, the discussion above implies the following result.

THEOREM 1. SupposeB1, . . . , BN are polytopes. Let{Pi, i ∈ I } be a finite set of
polyhedra coveringR2 such that eachγBk(x−ak) is affinely linear inx within each
Pi. Then, the set{ext(S ∩ Pi), i ∈ I } is an FDS for problem (2.4) (see Figure 1).

Proof. Since{Pi, i ∈ I } covers the plane, for anyx ∈ S there existsi∗ ∈ I
such thatx belongs to the polygonPi∗ ∩ S.
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Figure 1. Illustration for Theorem 1.

Since eachγBk(x−ak) is affinely linear withinPi∗ , it follows that, withinPi∗ ,F
is the composition of the quasiconcave function8 with the affinely linear function
mappingy ∈ Pi∗ to (y, γB1(y − a1), . . . , γBN (y − aN)). ThusF is quasiconcave
on conv(Pi∗ ∩ S), and, therefore, attains its minimum on conv(Pi∗ ∩ S) in some
element of ext(Pi∗ ∩ S).

Hence, any feasiblex is dominated by somex∗ ∈ ⋃i∈I ext(Pi∗ ∩ S), as asser-
ted. 2

As a consequence of Theorem 1, Problem (2.4) can – for polyhedral gauges –
be reduced to inspecting the finite list of points in the set

⋃
i∈I ext(Pi ∩ S). If each

Bk hasv(Bk) extreme points,V := maxNk=1 v(Bk) andS hasv(S) extreme points,
then

⋃
i∈I ext(Pi ∩ S) will have cardinality

O(N2V 2+NV v(S)), (3.8)

and can be constructed by well-known computational geometry techniques [2, 23].
In the case of gauges defined by arbitrary compact, convex unit ballsB1, . . .,BN ,

Theorem 1 obviously does not hold. The best we can hope for in this general
situation is an FDS result for an approximate solution of Problem (2.4).

The following, straightforward property will be of use to achieve this goal.

THEOREM 2. Given two compact convex setsB1, B2 with the origin in the re-
spective interior, the following property holds.
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1. If B1 ⊆ B2 thenγB1 > γB2

2. For any1 > 0, γ(1B) = 1
1
γB

Next, we will use the Lipschitz property of the function8 to see the impact
for Problem (2.4) of replacing unit balls in the definition of gauges by other unit
balls and prove the following approximation result. (Recall, thatFQ(x) stands for
the objective functionF(x) in Problem (2.4) in which the gauges are defined with
respect to the setQ = {Q1, . . . ,QN } of unit balls.)

THEOREM 3. LetCk,Ek,Dk be compact, convex sets with0 ∈ int (Ck) and

Ck ⊆ Ek ⊆ Dk ⊆ 1Ck, k = 1, . . . , N, (3.9)

for some1 > 1. Moreover, letL > 0 be the given Lipschitz constant for8(x, ·),
and letM satisfy

M > max
y∈ext(S)

‖γC1(y − a1), . . . , γCN (y − aN)‖ (3.10)

Then we get for anyP,Q ∈ {C,D,E} andε = L(1− 1
1
)M

1.

06 |FP (x)− FQ(x)| 6 ε (3.11)

2. Any optimal solutionxP for minx∈S FP (x) is anε-optimal solution forminx∈S
FQ(x)

Proof.By Theorem 2,

γCk(x) > γEk(x) > γDk (x) >
1

1
γCk(x) ∀x ∈ S, k = 1,2, . . . , N

Since, by assumption,8(x, ·) is componentwise nondecreasing,

FC(x) = 8(x, γC1(x − a1), . . . , γCN (x − aN))
> 8(x, γE1(x − a1), . . . , γEN (x − aN))
> 8(x, γD1(x − a1), . . . , γDN (x − aN))
> 8(x,

1

1
γC1(x − a1), . . . ,

1

1
γCN(x − aN))

Hence for allP,Q ∈ {C,D,E}
0 6 |FP (x)− FQ(x)|
6 FC(x)−8(x, 1

1
γC1(x − a1) . . . ,

1

1
γCN (x − aN)),

6 L‖(γC1(x − a1), . . . , γCN (x − aN))−
1

1
(γC1(x − a1), . . . ,

γCN (x − aN))‖
= L(1− 1

1
)‖(γC1(x − a1), . . . , γCN (x − aN))‖

6 L(1− 1

1
)max
y∈S
‖(γC1(y − a1), . . . , γCN (y − aN))‖
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Since the function mappingu ∈ RN+ to ‖u‖ is convex and componentwise
increasing, and the function assigning to eachx ∈ R2 the value(γC1(x − a1), . . . ,

γCN (x − aN)) is convex, it follows that the functionx ∈ R2 7−→ ‖(γC1(x −
a1), . . . , γCN (x − aN))‖ is also convex, thus attaining its maximum onS at some
point in ext(S). In other words,

max
y∈S
‖(γC1(y − a1), . . . , γCN (y − aN))‖ = max

y∈ext(S)
‖(γC1(y − a1), . . . ,

γCN (y − aN))‖
6 M,

such that

|FP (x)− FQ(x)| 6 L(1− 1

1
)M,

as claimed in (3.11).
If xP and xQ denote optimal solutions for minx∈S FP (x) and minx∈S FQ(x),

respectively, then we get

|FP (xP )− FQ(xQ)| = FP (xP )− FQ(xQ)( if not, interchange P and Q)

≤ FP (xQ)− FQ(xQ)
≤ L(1− 1

1
)M,

showing theε = L(1− 1
1
)M- optimality. 2

Theorem 3 enables us to solve Problem 2.4 with any required accuracyε by
choosingP = B = {B1, . . . , BN } as the originally given unit balls B of Prob-
lem 2.4 andQ = B̃ = {B̃1, . . . , B̃N } as a set of polyhedral balls satisfying (3.9)
according to the following algorithm.

ALGORITHM 1. (Input: ε > 0; Output: x̃, ε-optimal for Problem (2.4)).

Step 0: Set

M = max{ ε
L
, max
y∈ext(S)

‖γB1(y − a1), . . . , γBN (y − aN)‖}

1 = 1+ ε

LM − ε

Step 1: Find a set̃B of polytopesB̃1, . . . , B̃N such thatP = B̃ andQ = B satisfy
the conditions of Theorem 3.

Step 2: Use Theorem (1) to find an optimal solutionx̃ of

min
x∈S

F̃ (x) := 8(x, γB̃1
(x − a1), γB̃2

(x − a2), . . . , γB̃N (x − aN)).
(3.12)
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STOP x̃ satisfies

|FB̃(x̃)−min
x∈S F (x)| ≤ ε

As we have seen in the beginning of this section, Step 2 can be done for fixedε

in polynomial time, where the complexity of this step is depending on the maximal
numberV of extreme points in any of the polytopes̃Bk. It is therefore crucial to
choose the polytopes in such a way that V is as small as possible. In the subsequent
section, we will present two approaches dealing with this problem. In the first
approach based on the sandwich algorithm of [3, 33] we choose in Theorem 3
Ek = Bk andCk andDk as inner and outer approximation ofBk, respectively.
The resulting algorithm will produce an a priori bound on the cardinality of a FDS
to solve Problem 2.4 with required accuracyε. In the second approach, a Greedy
procedure is applied to find a so-called polyhedral, convex separatorEk separating
Ck = Bk andDk = 1Bk = (1+ ε

LM−ε )Bk. It will be shown that the number of
extreme points produced with this procedure is at most by 1 larger than the smallest
possible one.

4. Finding approximating polytopes by the sandwich procedure

We use the sandwich algorithm proposed by [3] for univariate convex functions and
applied by [33] for approximation of convex bodies. The idea of the sandwich ap-
proach is to iteratively approximate a given convex body B with the goal of getting
at the end of the iterations a required accuracyδ > 0 by an interior polyhedronBi

and an outer polyhedronBo, respectively, i.e.Bi ⊆ B ⊆ Bo ⊆ (1+ δ)B. In each
iteration of the algorithm we check whether the Hausdorff distance (with respect
to Euclidean distancel2)

Hl2(B
i, Bo) = max

x∈Bo
min
y∈Bi

l2(x, y) > δ.

If this is not the case,Hl2(B
i, Bo) 6 δ as required. Otherwise, a pairx ∈ Bo,

y ∈ Bi with l2(x, y) > δ is chosen and the pointz ∈ [x, y]∩bd(B) is identified.Bi

andBo are updated by choosingz in the inner polyhedron Bi as additional extreme
point and in the outer polyhedron Bo as supporting point (see Figure 2).

If R is the circumference of B, it can be shown (see [3, 33]) that no more than

max

{
4,

√
8R

δ
+ 2

}
many iterations are needed before the procedure stops withBi ⊆ B ⊆ Bo such
thatHl2(B

i, Bo) 6 δ.
SinceB is sandwiched byBi andBo we obtain the same bound for the Haus-

dorff distances betweenB andBi , andB andBo, i.e.

Hl2(B,B
o) 6 δ and Hl2(B,B

i) 6 δ.
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Figure 2. One iteration of the sandwich algorithm. The distancel2(x, y) > δ such thatz is
included as additional point in both approximating polyhedra.

Consequently, both,Bi andBo, can be used asδ-approximation ofB. We can
therefore define in Theorem 3Ck = Bik, Ek = Bk andDk = Bok for all k =
1, . . . , n, and1 = δ+1. If Rk is the circumference ofBk, k = 1, . . . , N and

Vk an integer such thatVk > max
{
4,
√

8·Rk
δ+1 + 2

}
, thenBik andBok are polyhedra

with O(Vk) many extreme points. UsingV := maxk Vk, the complexity result for
solving location Problem (2.4) with respect to polynomial gauges, (see Theorem 1
and the subsequent analysis) and the interrelationδ = 1− 1 = ε

Lµ−ε , Theorem 3
yields the following result.

THEOREM 4. An ε-optimal solution of Problem 2.4 can be obtained by consid-
ering an FDS of cardinalityO(N2V 2 + Nv(S)V ) wherev(S) is the number of
extreme points of the feasible regionS.

5. Finding approximating polytopes by the Greedy algorithm

In this section we will separate the closed convex setsCk = Bk andDk = 1Bk =
(1+ ε

LM−ε )Bk by a polytopeEk in the sense of Theorem 3. A polytopeEk with
the required propertyCk ⊆ Ek ⊆ Dk is called a convex separator with respect to
Ck andDk, denotedcs(Dk \ Ck). In order to simplify the denotation we will in
the following delete the indexk and investigate the problem of finding for given
closed, convex setsC andD with C ⊆ D a convex separatorcs(D \ C), i.e.
C ⊆ cs(D \ C) ⊆ D

The boundarybd(cs(D \ C)) of cs(D \ C) is a closed polygonal curve. If the
context is clear we often call the boundary itself a convex separator. Our goal is
to find convex separators with the smallest possible number of extreme points, a
minimum convex separator.

For this purpose we define for any pointd ∈ bd(D) the procedureTangent
(d, C) as the process of identifying

• the clockwise tangent with respect toC passing throughd
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Figure 3. Example for Tangent(d, C).

• the pointc ∈ C where the tangent touchesC
• the second pointd ′ ∈ bd(D) contained in the tangent.

Output of Tangent(d, C) is the line segment[d, d ′] and the touching pointc (see
Figure 3). The following algorithm will iteratively apply the procedure Tangent
(d, C) until a convex separator is found.

Greedy Algorithm for finding cs(D \ C) (see Figure 4)

1. Choosed1 ∈ D and apply Tangent(d1, C) to obtain[d1, d2] andc1, seti = 2.
2. Apply Tangent(di, C) to obtain[di, di+1] andci .
3. If d1 is visible fromdi+1 choose in[di, di+1] the pointd̃ closest todi which is

visible fromd1 setdi+1 = d̃ and outputbd(cs(C\D)) = (d1, c1, d2, . . . , di, ci,

di+1, ci+1, d1)

Else: i := i + 1 and Goto 2

Figure 4. Example for the Greedy Algorithm.
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By definition, the Greedy algorithm produces a convex separator with respect
toC andD. The next theorem shows, that it is, for the purpose of applying it to the
location problem 2.4, particularly well suited.

THEOREM 5. The Greedy algorithm outputs a minimum convex separator with
respect toC andD or contains one more vertex than a minimum convex separator.

Proof.Let cs(D \C, d1) be the convex separator defined by the Greedy proced-
ure obtained from starting pointd1. Obviously the following property holds:

If d1 is moved clockwise alongbd(D) thenc1, c2, . . . , ci+1 andd2, . . . , di+1

will also move clockwise alongC andD, respectively.

We now show thatd1 can be chosen in such way thatcs (D \ C, d1) is even a
minimum convex separator.

For this purpose let the close polygonP be any minimal convex separator. Wlog
we assume that every edge ofP is tangent toD. (If this is not the case, move a
non-tangent edge inwards along its adjacent edges until it becomes tangent (see
Figure 5). This process does not increase the number of vertices ofP .) Two cases
may exist.

Figure 5. Moving an edge inwards.

Case 1.P contains exactly one or no vertex in intD. ThenP = cs(D \ C, d1),
whered1 is the vertex ofP clockwise next to the vertex in intC (if such a
vertex exists) or any vertex ofP , respectively.

Case 2. IfP contains at least two vertices in intD. Let v be one of them with
adjacent edgese andf in clockwise order, and letu be the other end vertex
of f . If we move along the extension ofe to bd(D) and maintain the tangent
property off , vertexu moves clockwise alongbd(C). (see Figure 6)
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Figure 6. Moving v to the boundary.

According to the observation at the beginning of the proof all subsequent ver-
tices ofP will move clockwise alongbd(D) until the first node inD is reached. A
new vertex in int(D) is generated resulting in a new convex separatorP with the
same number of vertices, but containing one more of them onbd(D) than before.

By iteratively applying this procedure the assumption of Case 1 finally holds
such thatcs (D \ C, d1) is, indeed, a minimal convex separator.

Now let P(D \ C, d1) andP(C \ D, b) be an arbitrary and minimal convex
separator, respectively, both delivered by the Greedy procedure.

If the two vertices ofP(D \ C, b) ∩ bd(D) next to d1 - say b̃ and b′ - are
directly connected by an edge ofP(D \ C, b) (see Figure 7), then draw both
tangents with respect toC passing throughD and intersectingP(D \ C, b) atw
andv, respectively. Movev along the tangent away fromd1 until it reachesbd(C)
thus rotating the following edges as discussed before. This operation gives us the
polygonal curveP(D \ C, c1) which – by construction – is a convex separator
and has a number of vertices at most one larger than the number of vertices of the
minimum convex separatorP(C \D, b).

Note thatP(D\C, d1) is even a minimum convex separator ifd1 = b ord1 = b′.
If b̃ andb′ are connected by two edges ofP(D \C, b) the same procedure leads

again toP = (D \ C, d1) with |V (P (D \ C, d1))| = |V (P (D \ C, b))| + 1 (see
Figure 8)

In the case, where the setsD andC are unit balls of the Euclidean metric, the
choice of the starting point is because of the symmetry ofC andD irrelevant. The
proof of the preceding theorem thus implies that the following result holds.

COROLLARY 6. If D = {x ∈ R2 : ‖x‖ 6 1} is thel2-unit ball andC = 1 · D
for 1 > 1, then anyP(C \D, c1) produced by the Greedy procedure is optimal.

Notice that in the case of Corollary 6, the location problem with polyhedral
gauges may be further simplified. If the optimal numbersV of extreme points in
the convex separator is known from the application of the Greedy algorithm, the
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Figure 7. b̃ andb′ are directly connected by an edge.

Figure 8. b̃ andb′ are not directly connected by an edge.

Greedy convex separators may be replaced by regularV -g ones. Consequently, the
usually irregular tessellation of the plane (see Figure 1) is replaced by a regular
one which opens up new possibilities to improve the average running time of the
algorithm.

6. Conclusion and future research topics

In this paper we have developed a polynomial approximation scheme for a very
general class of location problems. The characteristic of the solution approach is
the reduction of the original problem to problems in which the distance between
new and existing facilities is measured by a polyhedral gauge. This modified prob-
lem can be solved by identifying a finite dominating set (FDS) of a size which is –
for fixed accuracyε – polynomial in the input of the problem.
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We have presented two alternative approaches to find a suitable transformation
to a polyhedral gauge problem, one based on the sandwich approach, the other on
a Greedy procedure.

The algorithms presented in this paper are for some of the specific choices of
feasible setsS and function8 the only known approaches to solve these problems
in a systematic way and with ana priori knowledge of the accuracy obtained after a
given number of elementary operations. Besides the fact, that this allows the treat-
ment of problems which so far could not be dealt with, it will also be investigated in
the future, how the approach compares with alternatives in cases, where algorithms
which have worked in the past satisfactorily are already available.

A first example will be problems with Euclidean distances. Here, the approxim-
ation uses polyhedral gauges with unit balls having the smallest number of extreme
points. Since the unit balls can be chosen as regularV -gones the search in the
resulting regular grid can be streamlined. It remains to be seen, whether the res-
ulting algorithm will be competitive with current approaches to Euclidean location
problems with non-convex objectives.
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